**SUBITOP** 

Understanding subduction zone topography through modelling of coupled shallow and deep processes

## Solving the flow field

- Conservation of momentum & mass
- Numerical approach
- Staggered grids
- Solving matrix-vector systems
- Rayleigh-Bénard convection
- Calculating topography









#### Force balance: the Stokes equation (1)

Sum of forces equals 0: difference in  $\sigma_{ij}$  over block body force  $F_i$ 

□total force = 0





#### Force balance: the Stokes equation (1)



#### Force balance: the Stokes equation (2)



#### Force balance: the Stokes equation (3)

Understanding subduction zone topography through modelling of coupled shallow and deep processes

#### Force balance: the Stokes equation (4)

□ in x- and z-direction:

$$\eta \left( \frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial z^2} \right) - \frac{\partial P}{\partial x} = 0$$
$$\eta \left( \frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial z^2} \right) - \frac{\partial P}{\partial z} + F_z = 0$$

So we have:

2 equations

3 unknowns:
 pressure P
 velocities v<sub>x</sub> & v<sub>z</sub>

SUBITOP

additional constraint required

#### Mass conservation (continuity equation)

#### Net in/outflow = 0

$$\Delta z(v_{x,in} - v_{x,out}) + \Delta x(v_{z,in} - v_{z,out}) = 0$$

$$\frac{v_{x,in} - v_{x,out}}{\Delta x} + \frac{v_{z,in} - v_{z,out}}{\Delta z} = 0$$
$$\frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z} = 0$$



Understanding subduction zone topography through modelling of coupled shallow and deep processes

# Set of governing equations for mantle convection

#### Conservation of:

momentum:

mass:

□ heat:

$$\eta \left( \frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial z^2} \right) - \frac{\partial P}{\partial x} = 0$$
  
$$\eta \left( \frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial z^2} \right) - \frac{\partial P}{\partial z} = \alpha \rho \delta Tg$$
  
$$\frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z} = 0$$
  
$$\frac{\partial T}{\partial t} = \kappa \left[ \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial z^2} \right] - v_x \frac{\partial T}{\partial x} - v_z \frac{\partial T}{\partial z}$$



Scaling and the Rayleigh number Ra Scaling parameters with: x = x'h,  $t = t'\frac{h^2}{\kappa}$ ,  $T = T'\Delta T$ 

from which can be derived:  $v = v' \frac{\kappa}{h}$ ,  $P = P' \frac{\eta \kappa}{h^2}$ 

momentum:

mass:

#### heat:



Scaling and the Rayleigh number Ra Scaling parameters with: x = x'h,  $t = t'\frac{h^2}{r}$ ,  $T = T'\Delta T$ from which can be derived:  $v = v' \frac{\kappa}{h}$ ,  $P = P' \frac{\eta \kappa}{h^2}$  $\square \text{ momentum: } \left(\frac{\partial^2 v'_x}{\partial x'^2} + \frac{\partial^2 v'_x}{\partial z'^2}\right) - \frac{\partial P'}{\partial x'} = 0$  $\left(\frac{\partial^2 v'_z}{\partial x'^2} + \frac{\partial^2 v'_z}{\partial z'^2}\right) - \frac{\partial P'}{\partial z'} = RaT'$ with:  $Ra = \frac{\alpha \rho g \Delta T h^3}{\eta_0 \kappa}$  $\frac{\partial v'_x}{\partial x'} + \frac{\partial v'_z}{\partial z'} = 0$ mass:  $\frac{\partial T'}{\partial t'} = \frac{\partial^2 T'}{\partial x^2} + \frac{\partial^2 T'}{\partial z^2} - v_x \frac{\partial T'}{\partial x'} - v_z \frac{\partial T'}{\partial z'}$ heat:

> Understanding subduction zone topography through modelling of coupled shallow and deep processes

#### Scaling and the Rayleigh number Ra



SUBITOP

## Analogue convection modelling



Understanding subduction zone topography

through modelling of coupled shallow and deep processes

**SUBITOP** 





(Guillou and Jaupart, 1995; geology.um.maine.edu)

## Solving Stokes + continuity equations

1. 
$$\left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial z^2}\right) - \frac{\partial P}{\partial x} = 0$$
  
2. 
$$\left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial z^2}\right) - \frac{\partial P}{\partial z} = RaT$$
  
3. 
$$\frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial z} = 0$$

#### Solving the Stokes equations

Just like solving 2 equations with 2 unknowns:

$$3x + 4y = 19$$
  

$$2x + 2y = 10 \qquad \Rightarrow \begin{pmatrix} 3 & 4 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 19 \\ 10 \end{pmatrix} \qquad \Rightarrow \quad A\vec{x} = \vec{b}$$

We can solve the 3 \* nx \* nz flow equations as follows:

$$\begin{vmatrix} v_{x}^{2} \\ v_{z}^{1} \\ P^{2} \\ v_{x}^{2} \\ v_{z}^{2} \\ \vdots \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ 0 \\ RaT \\ 0 \\ \vdots \end{vmatrix}$$

 $\rightarrow A\vec{x} = \vec{b}$ 

Understanding subduction zone topography through modelling of coupled shallow and deep processes

SUBITOP

Large matrix

## Calculating observables

Surface heat flow: 

$$q_{surf} = -k \frac{dT}{dz} \bigg|_{z=0} \approx -k \frac{T_{i,1} - T_{i,0}}{\Delta z}$$

□ Free-slip surface 'topography':

$$h = -\frac{\sigma_{zz}}{\Delta \rho g} \bigg|_{z=0} = -\frac{\tau_{zz} - P}{\Delta \rho g} \bigg|_{z=0} = -\frac{2\eta \dot{\varepsilon}_{zz} - P}{\Delta \rho g} \bigg|_{z=0} = -\frac{2\eta \frac{dv}{dz} - P}{\Delta \rho g} \bigg|_{z=0}$$
$$= \frac{2\eta \frac{(v_{z,i,1} - v_{z,i,0})}{\Delta \rho g}}{(\rho_0 - \rho_{surf})g}$$

Understanding subduction zone topography through modelling of coupled shallow and deep processes du

## Surface topography

- □ Free-slip surface 'topography':  $h = -\frac{\sigma_{zz}}{\Delta \rho g}$ 
  - □ Simple to calculate
  - Instantaneous topography
  - Only works well over smooth surfaces, relatively long wavelengths
- Real surface topography:
  - □ Allow surface nodes to move vertically and measure topography
  - Needs stabilisation of interface\*
- $\Box$  'Sticky-air' topography:
  - Create a non-diffusive interface with weak, light material on top of solid Earth
  - $\Box$  weak layer viscosity ~ 10<sup>18</sup> 10<sup>19</sup> Pa s
  - Needs tracking and stabilisation of interface\*



\*(Kaus et al., 2010; Andrés-Martínez et al., 2015)

#### Practical 4:

- □ Build a Releigh-Benard convection solver:
- Convert a provided Stokes solver into a subfuction
- Modify your advection-diffusion solver to incorporate this Stokes solver
- Calculate derived quantities like topography.



https://community.dur.ac.uk/jeroen.van-hunen/Subitop/session4.html





#### Extra: Staggered grids







| Staggered grids: Stokes-x equation |                                                                                          |                                                    |          |                                    |  |  |
|------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------|----------|------------------------------------|--|--|
| 1.                                 | $\left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial z^2}\right)$ | $-\left(-\frac{\partial P}{\partial x}\right) = 0$ |          | ?                                  |  |  |
| $v_{x,right} - 2v_{x,central}$     | $+ v_{x,left} + \frac{v_{x,top}}{-}$                                                     | $-2v_{x,central} + v_{y}$                          | x,bottom | $\frac{P_{right} - P_{left}}{= 0}$ |  |  |
| $\Delta x^2$                       |                                                                                          | $\Delta z^2$                                       |          | $\Delta x$                         |  |  |

Pressure gradient discretisation not centred around central  $v_x$  point

through modelling of coupled shallow and deep processes

Understanding subduction zone topography

**SUBITOP** 



20

| Staggered grids: Stokes-x equation |                                                                                          |                                                                                      |                |                                    |  |  |
|------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------|------------------------------------|--|--|
| 1.                                 | $\left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial x^2}\right)$ | $\left(\frac{\partial v_x}{\partial z^2}\right) - \frac{\partial P}{\partial x} = 0$ |                | ?                                  |  |  |
| $v_{x,right} - 2v_{x,centr}$       | $\frac{v_{al} + v_{x,left}}{v_{al} + v_{x,left}} + \frac{v_{x,left}}{v_{al} + v_{al}}$   | $t_{top} - 2v_{x,central} + \frac{1}{2}$                                             | $V_{x,bottom}$ | $\frac{P_{right} - P_{left}}{= 0}$ |  |  |
| $\Delta x^2$                       |                                                                                          | $\Delta z^2$                                                                         |                | $\Delta x$                         |  |  |

Pressure gradient discretisation not centred around central  $v_x$  point



Understanding subduction zone topography through modelling of coupled shallow and deep processes

Staggered grids: Stokes-x equation  
1. 
$$\begin{pmatrix}
\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial z^2} \\
\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial z^2}
\end{pmatrix} - \frac{\partial P}{\partial x} = 0$$

$$\frac{v_{x,right} - 2v_{x,central} + v_{x,left}}{\Delta x^2} + \frac{v_{x,top} - 2v_{x,central} + v_{x,bottom}}{\Delta z^2} - \frac{P_{right} - P_{left}}{\Delta x} = 0$$

Pressure gradient discretisation is centred around central  $v_x$  point, but is not a grid point **SUBITOP** Understanding subduction zone topography

through modelling of coupled shallow and deep processes





Pressure gradient discretisation is centred around central  $v_{\tau}$  point, but is not a grid point SUBITOP Understanding subduction zone topography

through modelling of coupled shallow and deep processes

#### Staggered grids: continuity equation $\frac{\partial v_x}{\partial x} + \frac{\partial v_z}{\partial x} = 0$ 3. $\partial x$ $\partial Z$ $\mathcal{V}_{x,left}$ $V_{z,\underline{top}}$ x,right z,bottom =0 $\Delta x$ $\Delta z$ Both velocity gradients not centred around a common point **SUBITOP** Understanding subduction zone topography through modelling of coupled shallow and deep processes



 $\frac{V_{x,right} - 2V_{x,central} + V_{x,left}}{\Delta x^{2}} + \frac{V_{x,top} - 2V_{x,central} + V_{x,bottom}}{\Delta z^{2}} - \frac{P_{right} - P_{left}}{\Delta x} = 0$ 

$$\frac{v_{z,right} - 2v_{z,central} + v_{z,right}}{\Delta x^2} + \frac{v_{z,bottom} - 2v_{z,central} + v_{z,top}}{\Delta z^2} - \frac{P_{bottom} - P_{top}}{\Delta z} = Ra\frac{T_{right} + T_{left}}{2}$$

$$\frac{v_{x,right} - v_{x,left}}{\Delta x} + \frac{v_{z,bottom} - v_{z,top}}{\Delta z} = 0$$

Pressure gradient discretisation is centred around central  $v_x$  point.

Understanding subduction zone topography

through modelling of coupled shallow and deep processes



27

Staggered grids: Stokes-z equation  

$$\frac{v_{x,right} - 2v_{x,central} + v_{x,left}}{\Delta x^{2}} + \frac{v_{x,top} - 2v_{x,central} + v_{x,bottom}}{\Delta z^{2}} - \frac{P_{right} - P_{left}}{\Delta x} = 0$$

$$\frac{v_{z,right} - 2v_{z,central} + v_{z,right}}{\Delta x^{2}} + \frac{v_{z,bottom} - 2v_{z,central} + v_{z,top}}{\Delta z^{2}} + \frac{P_{bottom} - P_{top}}{\Delta z} = Ra\frac{T_{right} + T_{left}}{2}$$

$$\frac{v_{x,right} - v_{x,left}}{\Delta x} + \frac{v_{z,bottom} - v_{z,top}}{\Delta z} = 0$$

Pressure gradient discretisation is centred around central  $v_z$  point.





Both velocity gradients are centred

Understanding subduction zone topography through modelling of coupled shallow and deep processes

# Staggered grids: using ghost points T $v_z$ $v_x$ P

Adding ghost points to allow for natural boundary conditions.

#### *P*, $v_x$ and $v_z$ .

But remember, these are no real points, and values are copied from internal points.





## Staggered grids: adding unused points T $v_z$ $v_x$ P

Adding unused points to make nr of grid points the same for P,  $v_x$  and  $v_z$ .

So nothing will be solved there, but these make the system nicely Structured.





# Staggered grids: numbering grid points

Р

 $V_{\underline{x}}$ 

 $\mathcal{V}_{Z}$ 

- 1. Continuity 1
- 2. Stokes-x 1
- 3. Stokes-z 1
- 4. Continuity 2
- 5. Stokes-x 2
- 6. Stokes-z 2

7. ....



