SUBITOP

SUBITOP

Understanding subduction zone topography through modelling of coupled shallow and deep processes

modelling workshop

Days 2+3: Introduction to numerical modelling

Jeroen van Hunen

community.dur.ac.uk/jeroen.van-hunen/Subitop

General Learning Objectives

- □ How to use Python as a modelling tool
- □ How to describe physical processes mathematically:
 - Heat diffusion and advection
 - □ Fluid flow
- □ Mathematical concepts required to build numerical models:
 - Finite differences
 - Discretization
 - Time-stepping
 - Boundary conditions
 - Coupled equations
- □ How to construct basic numerical models in Python:
 - Heat advection-diffusion models
 - Mantle convection
- How to critically evaluate numerical models

- 1. Tue AM Introduction; 0D, 1D; radioactive decay, diffusion
- 2. Tue PM Extension to 2D models
- 3. Wed AM Advection-diffusion equation
- 4. Wed PM Coupled equations: convection model

Today's aims:

- The basic steps and processes behind building a numerical model
- How timestepping works and be able to compare different timestepping techniques
- Using resolution tests to check your model against analytical solutions
- Modelling a radioactive decay system
- □ The diffusion process and its governing equation
- □ Numerical modelling of spatially varying processes
- How to apply finite difference techniques to model 1D time-dependent heat diffusion

SUBITOR

A first example: Filling a bath tub

A very basic example: open tap & fill bath tub. What is amount of water in the tub through time?

□ If we assume that it fills at a constant rate of 2.6 litres/sec,

we get a basic equation ('governing equation') of: $\frac{dV}{dt} = b, \quad b = 2.6$ Initially the bath is empty Initial condition: V(0) = 0Analytical solution:

$$V(t) = 0 + 2.6t = 2.6t$$

SUBITOR

A first example: Filling a bath tub **Numerical approach:**

Governing Equation:

 $\frac{\mathrm{d}V}{\mathrm{d}t} = b \qquad \text{(infinitesimal calculus expression)}$ $\frac{\Delta V}{\Delta t} = \frac{V_{new} - V_{old}}{\Delta t} = b$ (discrete expression) $V_{new} = V_{old} + b\Delta t$ (unknowns left, known variables to right)

Numerical time step: try $\Delta t = 2$ seconds

Timestep 1: $V^1 = V^0 + b\Delta t = 0 + 2.6 * 2 = 5.2$ litres Timestep 2: $V^2 = V^1 + b\Delta t = 5.2 + 2.6 * 2 = 10.4$ litres

and so on ...

Second example: Draining a bath tub

Possible differential equation:
$$\frac{dV}{dt} = -aV$$
Analytical solution: $V(t) = V^0 \exp(-at)$
with V^0 the amount of water at $t=0$

Let's take V^0 =500 litres, and a = 0.01:

Timestep 1: $V^1 = V^0 - a\Delta t * V^0 = 500 - 0.01 * 2 * 500 = 490.0$ Timestep 2: $V^2 = V^1 - a\Delta t * V^0 = 490 - 0.01 * 2 * 490 = 480.2$

Third example: combination of the previous two

$$\frac{dV}{dt} = -aV + b$$

□ Analytical solution for an initially empty bath:

$$V(t) = \frac{b}{a} \left(e^{-at} - 1 \right)$$

□ Numerical approach:

SUBITOF

Time step 1: $V^1 = V^0 + dt^* (-aV_0 + b) = 0 + 2^*(-0.01^*0 + 2.6) = 5.2$ Time step 2: $V^2 = V^1 + dt^* (-aV_1 + b) = 5.2 + 2^*(-0.01^*5.2 + 2.6) = 10.296$

Accuracy of the model: Filling the bathtub

Understanding subduction zone topography through modelling of coupled shallow and deep processes

Accuracy of the model: Filling the bathtub

Understanding subduction zone topography through modelling of coupled shallow and deep processes

Understanding subduction zone topography through modelling of coupled shallow and deep processes

SUBITOF

Practical 1, Part 1:

□ Take a look at our first numerical model.

- Add the analytical solution. Is the solution perfect?
 Why or why not?
- What effect does the size of the time step have on the accuracy of the model

□ Why?

https://community.dur.ac.uk/jeroen.van-hunen/Subitop/session1.html

Finite difference approximation

Taylor expansion:
$$f(t + \Delta t) = f(t) + \Delta t \frac{df}{dt} + \frac{\Delta t^2}{2!} \frac{d^2 f}{dt^2} + \frac{\Delta t^3}{3!} \frac{d^3 f}{dt^3} + \frac{\Delta t^4}{4!} \frac{d^4 f}{dt^4} + \dots$$
Truncate:
$$f(t + \Delta t) = f(t) + \Delta t \frac{df}{dt} + O(\Delta t^2)$$
Re-arrange:
$$f(t + \Delta t) - f(t) = \Delta t \frac{df}{dt} + O(\Delta t^2)$$

or:
$$\frac{\frac{f(t+\Delta t)-f(t)}{\Delta t} = \frac{df}{dt} + O(\Delta t)}{\frac{df}{dt} = \frac{f(t+\Delta t)-f(t)}{\Delta t} + O(\Delta t)}$$

Thus: derivative of function h(t) at time $t \approx$ forward difference of the function over a time step Δt .

This approximation has additional terms the largest of which includes the factor Δt .

Understanding subduction zone topography through modelling of coupled shallow and deep processes

forward Euler method

SUBITOP

Understanding subduction zone topography through modelling of coupled shallow and deep processes backward Euler method

Re-arranging backward Euler equation:

Re-arranging backward Euler equation:

Understanding subduction zone topography through modelling of coupled shallow and deep processes

through modelling of coupled shallow and deep processes

Practical 1, Part 2:

Using finite difference techniques to model radioactive decay

- Work in small groups to discuss key modelling decisions about how to describe the geological process mathematically, what other information you'll need, how long a time to model, etc.
- Try out new Python commands and techniques you'll need for your model
- Build the model and implement different time stepping methods yourself
- If time permits, build a larger model to explore the Earth's secular cooling (Practical 1, Extras, part A)

https://community.dur.ac.uk/jeroen.van-hunen/Subitop/session1.html

